1037.Proposed by George Apostolopoulos, Messolonghi, Greece.

Let P be a point inside the triangle $A B C$ and let D, E, F be the projections of P on the sides $B C, C A$, and $A B$, respectively. Prove that

$$
\frac{P A+P B+P C}{(E F \cdot F D \cdot D E)^{1 / 3}} \geq 2 \sqrt{3}
$$

Solution by Arkady Alt, San Jose ,California, USA.

Let $R_{a}:=P A, R_{b}:=P B, R_{c}:=P C$ and $a_{p}:=E F, b_{p}:=F D, c_{p}:=D E$
(that is a_{p}, b_{p}, c_{p} are sidelengths of pedal triangle of point P). Then original inequality in the new notation becomes

$$
\begin{equation*}
\frac{R_{a}+R_{b}+R_{c}}{\left(a_{p} b_{p} c_{p}\right)^{1 / 3}} \geq 2 \sqrt{3} \tag{1}
\end{equation*}
$$

Since quadrilateral $F A E P$ is cyclic (because $P F \perp A B$ and $P E \perp A C$)
and R_{a} is diameter of circumcircle of quadrilateral $F A E P$
then $\frac{a_{p}}{R_{a}}=\sin A=\frac{a}{2 R}$ and, similarly, $\frac{b_{p}}{R_{b}}=\sin B=\frac{b}{2 R}, \frac{c_{p}}{R_{c}}=\sin C=\frac{c}{2 R}$ and inequality
can be rewritten as $\frac{R_{a}+R_{b}+R_{c}}{\left(\frac{a R_{a}}{2 R} \cdot \frac{b R_{b}}{2 R} \cdot \frac{c R_{c}}{2 R}\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow \frac{2 R\left(R_{a}+R_{b}+R_{c}\right)}{\left(a R_{a} \cdot b R_{b} \cdot c R_{c}\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow$
$\frac{R\left(R_{a}+R_{b}+R_{c}\right)}{\sqrt[3]{R_{a} R_{b} R_{c}}} \geq \sqrt{3} \sqrt[3]{a b c} \Leftrightarrow \sum_{c y c} \sqrt[3]{\frac{R_{a}^{2}}{R_{b} R_{c}}} \geq \frac{\sqrt{3}}{R} \sqrt[3]{a b c}$ or $\sum_{c y c}^{\sqrt[3]{R_{b} R_{c}}} \geq \sqrt{3} \sqrt[3]{\frac{s r}{R^{2}}}$.
Or, inequality (1) can be rewritten as $\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} \sin A \cdot R_{b} \sin B \cdot R_{c} \sin C\right)^{1 / 3}} \geq 2 \sqrt{3} \Leftrightarrow$ $\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} R_{b} R_{c}\right)^{1 / 3}} \geq 2 \sqrt{3}(\sin A \sin B \cdot \sin C)^{1 / 3}$.
Since $\frac{R_{a}+R_{b}+R_{c}}{\left(R_{a} R_{b} R_{c}\right)^{1 / 3}} \geq 3$ suffice to prove that $3 \geq 2 \sqrt{3}(\sin A \sin B \cdot \sin C)^{1 / 3} \Leftrightarrow$ $\frac{\sqrt{3}}{2} \geq(\sin A \sin B \cdot \sin C)^{1 / 3}$.
We have $\frac{\sin A+\sin B+\sin C}{3} \leq \frac{\sqrt{3}}{2}$ (because for $\sin x$ which is concave down on $[0, \pi]$ by Jensen's Inequality holds $\frac{\sin A+\sin B+\sin C}{3} \leq \sin \frac{A+B+C}{3}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$) and by AM-GM $(\sin A \sin B \cdot \sin C)^{1 / 3} \leq \frac{\sin A+\sin B+\sin C}{3}$.
(Another way to prove inequality $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$.
First note that for any $x, y \in[0, \pi]$ holds inequality $\sin x+\sin y \leq 2 \sin \frac{x+y}{2}$.
Indeed, $\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \leq 2 \sin \frac{x+y}{2}$ because
$\frac{x+y}{2} \in[0, \pi]$ and $\frac{x-y}{2} \in[-\pi / 2, \pi / 2]$.
Using inequality $\sin x+\sin y \leq 2 \sin \frac{x+y}{2}$ we obtain
$\sin A+\sin B+\sin C+\sin \frac{\pi}{3} \leq 2 \sin \frac{A+B}{2}+2 \sin \frac{C+\frac{\pi}{3}}{2} \leq 4 \sin \frac{\frac{A+B}{2}+\frac{C+\frac{\pi}{3}}{2}}{2}=$

$$
\left.4 \sin \frac{\pi+\frac{\pi}{3}}{4}=4 \cdot \sin \frac{\pi}{3}=2 \sqrt{3} \Rightarrow \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}\right)
$$

